Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure.

نویسندگان

  • T Meguro
  • C Hong
  • K Asai
  • G Takagi
  • T A McKinsey
  • E N Olson
  • S F Vatner
چکیده

Left ventricular hypertrophy (LVH) is a compensatory mechanism to cope with pressure overload. Recently, a calcineurin pathway mediating LVH and its prevention by cyclosporine was reported. We examined whether calcineurin mediates LVH due to pressure overload in mice. Pressure overload was induced by aortic banding in 53 mice (32 treated with cyclosporine [25 mg. kg-1. d-1], 21 treated with vehicle). There were 17 sham-operated mice (9 treated with vehicle, 8 treated with cyclosporine). At 3 weeks after surgery, LV weight to body weight was greater in the nontreatment banded group (4.39+/-0. 16 mg/g) than in the cyclosporine-treated banded group (3.95+/-0.14 mg/g, P<0.05), with both groups being greater compared with the entire group of sham-operated mice (3.02+/-0.04 mg/g). The pressure gradient between the ascending and abdominal aorta was not different between the cyclosporine-treated (49.6+/-6.1 mm Hg) and nontreatment groups (48.7+/-4.6 mm Hg). Although LV systolic pressure was lower in the cyclosporine-treated banded animals, LV systolic wall stress was similar in the nontreatment banded group and in the cyclosporine-treated group. However, LV dP/dt was lower (P=0.05) in the cyclosporine-treated banded group (4774+/-656 mm Hg/s) than in the nontreatment banded group (6604+/-516 mm Hg/s). During the protocol, 23 of 32 mice in the cyclosporine-treated group and 9 of 21 mice in the nontreatment group died. All deaths occurred within 10 days after surgery. Deaths caused by heart failure were 7.2-fold higher (P<0.05) in the cyclosporine-treated group, whereas deaths due to other causes were not different between the 2 groups. In addition, LV function of mice was assessed at 48 hours after banding; LV ejection fraction measured with echocardiography was lower (P<0.05) in the cyclosporine-treated banded group (66+/-3.0%) than in the nontreatment banded group (79+/-1.5%), whereas LV systolic wall stresses were similar. Calcineurin phosphatase activity was depressed similarly in both cyclosporine-treated groups compared with both nontreatment groups. Thus, cyclosporine could attenuate, but not prevent, LVH at the expense of inhibiting an important compensatory mechanism in response to pressure overload, resulting in reduced LV wall stress and function and increased susceptibility to decompensation and heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decompensation of Pressure-Overload Hypertrophy in Gaq-Overexpressing Mice

Background—Receptor-mediated activation of myocardial Gq signaling is postulated as a biochemical mechanism transducing pressure-overload hypertrophy. The specific effects of Gq activation on the functional and morphological adaptations to pressure overload are not known. Methods and Results—To determine the effects of intrinsic myocyte Gaq signaling on the left ventricular hypertrophic respons...

متن کامل

EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant.

OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We r...

متن کامل

UK-8, a Superoxide Dismutase and Catalase imetic, Reduces Cardiac Oxidative Stress nd Ameliorates Pressure Overload-Induced eart Failure in the Harlequin Mouse Mutant

OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We rec...

متن کامل

RhoGEF12 controls cardiac remodeling by integrating G protein– and integrin-dependent signaling cascades

Structural cardiac remodeling, including hypertrophy and fibrosis, plays a crucial role in the pathogenesis of heart failure. In vitro studies suggested a role of the small GTPase RhoA in hypertrophic cardiomyocyte growth, but neither the molecular mechanisms leading to RhoA activation nor their relevance in vivo are known. We use here a mass spectrometric approach to identify Rho guanine nucle...

متن کامل

Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin.

Cardiac hypertrophy is the fundamental adaptation of the adult heart to mechanical load. Recent work has shown that inhibition of calcineurin activity with cyclosporine suppresses the development of hypertrophy in calcineurin transgenic mice and in in vitro systems of neonatal rat cardiocytes stimulated with peptide growth factors. To test the hypothesis that the calcineurin signaling pathway i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 1999